分光学俯瞰講義

47 + Years of Spectroscopy on Unstable Species

Yuan-Pern Lee

Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Born

BS, Dept. Chemistry, National Taiwan University

Dept. Chemistry, U. C. Berkeley George Pimentel (1922–1989)

Matrix isolation- chemi-luminescence

8 Chemiluminescence of SO ($\tilde{c} \, {}^{1}\Sigma^{-} \rightarrow \tilde{a} \, {}^{1}\Delta$) in solid argon

Yuan-Pern Lee and George C. Pimentel

Department of Chemistry, University of California, Berkeley, California 94720 (Received 23 May 1978)

FIG. 1. Thermoluminescence spectra of irradiated OCS/O₂/Ar. Trace (a) 1/1/200; trace (b) 3/1/200.

1978 Henry F. Schaeffer (1944-)

Quantum-chemical calculations

1979

Diatomic sulfur: Low lying bound molecular electronic states of S_2^{a}

William C. Swope, Yuan-Pern Lee, and Henry F. Schaefer, III

Department of Chemistry and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 22 August 1978)

State	Size of D _{3h} Cl space	Methoda	$T_{0*} \text{ cm}^{-1}$	T ₀ . cm ⁻¹	7e. Å	∝ _e , cm*1	B _e , cm ⁻¹	α _e . cm ^{*1}	
Σ.	5 52 9	SC F	72 500 59 700	5 ≠ 65 800 5 ≠ 49 900	2.026 2.128	650 500	0,2566 0,2326	0.0011	
		Expt. ^b	45100	5 + 44 800 5 + 36 624.7		428.5			
r'a,		SCF	61 400	$\alpha + 54600$	2,030	660	0.2556	0.0011	
	5529	CI +	49700	a = 44300 a = 39300	2,138	500	0,2305	0,0010	
		Expt.	~ 41600	$\alpha + 36875.45$	2.1555	438.32	0.22704	0.00178	
σ¹Π _g		SCF	37 000	c + 24.400	2.160	280	0.2257		1
	2915	CI +	43 000	e + 25700 e + 25400	2,143	430	0.2293		Π.
		Expt. °	(~ 37 000)	(e+13451.8)	(~ 2.08)	(533.7)	(~ 0.25)		
п,		SCF	49300	49 300	2.154	500	0.2270	0.0009	
	3051	CI	41 600	41 600	2,243	400	0.2094	0.0012	
		CI+ Expt.	37 600	37600					
or la		0019	53.000	41 - 20 660	0.100	460	0.0045		
·	2939	CI	35400	A' + 17 100	2,106	450	0.2375	0.0023	
		CI+	35300	A' = 16200					
		Expt."	35300	A' = 14326	2.08	~ 500	0,244	•••	
8 ³ E.		SCF	50100	50100	2,033	650	0,2549	0.0011	
	\$827	CI	39300	38 300	2,142	490	0,2296	0.0017	
		Expt.	31 689	31 689	2,168	434	0.2244	0.0018	
o** 3m		SC V	41 400	41.400	2 135	510	0 2210	0.0000	
· ··•	3078	CI	35 200	35 200	2,219	430	0.2139	0.0000	
		CI +	32100	32100					
		Expt.	≤ 31 700	\$31,700	<2.28		>0,2029		
Έ.		SCF	14 000	A' +710	2.156	510	0.2267	0.0014	
	5747	CI .	18 900	A*+610	2.176	580	0.2224	0,0016	
		Expt.d	21 971	A' + 997	2.15	482.15	0.2248	0.0014	
41 ³ A		SCF	13 300	13300	2 148	520	0.2284	0.0014	
	5827	C1	18 300	18 300	2.168	480	0.2242	0,0016	
		CI+	19100	19109					
		Expt.*	20 974	20974	2,146	488.2	0,2285	0,0015	
$\mathbf{z}_{\mathbf{z}}$		SCF	12 600	12600	2.140	527	0.2301	0.0014	
	5683	CI+	17 500	17 900	2,160	489	0.2337	0.0017	
		Expt.*	~ 20000	~ 20 000					
1z;		SCF	6730	6730	1.877	813	0,2989	0,0012	
	4562	CI	9790	9790	1.914	732	0.2874	0.0015	
		CI+	8960	8960		703.82			
		naps.				109, 55			
- A	4562	CI	6730 5440	6730 5440	1.877	813	0.2989	0.0012	
		CI+	4820	4820			#001		
		Expt.	~ 4700	~ 4700	1,8997	702,35	0.29262	0.00173	
κ 22		SCF	0	0	1.876	819	0.2994	0.0012	
	2948	CI	0	0	1,900	760	0.2920	0.0015	
		CI+	0	0					

3 JCP 70, 947 (1979)

1986 First FTIR: Bomem DA3.002 (Regional Instrument Center)

1987

JCCS 34, 161 (1987)

PRODUCT DETERMINATION OF GASEOUS RADICAL REACTIONS USING MATRIX ISOLATION-FTIR DETECTION

YU-PING KUO (郭玉萍), SHAN-SHAN JU (朱姗姗) AND YUAN-PERN LEE (李遠鵬) Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, R.O.C.

CIO + $HO_2 \rightarrow$ Observed HO_2 , CIO, CIO₂, HOCI, HCI

Techniques in Spectroscopy

1987	Supersonic jet, laser-induced fluorescence
1988	Matrix isolation, Laser-induced fluorescence
1995	VUV absorption / ionization
1995	Degenerate four-wave mixing Two-color resonant four-wave mixing
1995	Step-scan FTIR in emission mode
1997	Step-scan FTIR in absorption mode
2004	Para-hydrogen matrix isolation
2005	NIR Cavity ringdown
2011	VUV/IR ionization TOF detection
2018	Quantum-cascade laser absorption

Techniques in kinetics/dynamics

Inert-gas matrices

Pimentel & Porter, 1954

Sample diluted in inert gas and deposited onto a cold (4–20 K) target guest : sample host : Ar, Ne, Kr, Xe, N₂, O₂, H₂

Characteristics

PCCP 9, 4698 (2007)

11

 Requires minimal samples
 Simplified spectra- no rotation, no hot bands
 Small matrix shift of vibrational wavenumbers from gas phase
 Cage effect- higher photo-dissociation threshold recombination of dissociation fragments
 Rapid energy relaxation

	$A' {}^{3}\Delta_{u} \rightarrow X {}^{3}\Sigma_{g}^{-}$	$C \ ^{1}\Sigma_{u} X \ ^{3}\Sigma_{g} $	$C \ ^{1}\Sigma_{u} a \ ^{1}\Delta_{g}$	$C \ ^{1}\Sigma_{u} a \ ^{1}\Delta_{g}$
v_{00} / cm^{-1}	20870 ± 30	19757	15750 ± 10	15417
ω_{e} " /cm ⁻¹	724 ± 6	721.4	699 ± 5	698.1
$\omega_e x_e^{"/cm^{-1}}$	2.9 ± 1.0	2.86	2.6 ± 1.0	3.04

para-H₂ matrices

14

Quantum solid large amplitude of zero-point vibration Small interaction High resolution spectroscopy (Hindered) rotation for some molecules Diminished cage effect Nuclear spin relaxation

para-H₂

Nuclear spin = 0 (antisymmetric)

Rotational part J even (symmetric)

ortho-H₂

Nuclear spin = 1 (symmetric) Rotational part J odd (antisymmetric)

Free Radicals:

in situ photolysis photo-induced bimolecular rxs : atom/radical + molecules

Torsional Motion of CH₃OH

Taken from: Stephen L. Davis, George Mason University, Fairfax, VA 22030 http://classweb.gmu.edu/sdavis/research.htm

para-H₂ matrices

(A) parallel band ($\nu_1 \sim \nu_3$)

Spinning Rotation of CH₃F

JCP 129, 104502 (2008)

(B) perpendicular band ($\nu_{4} \sim \nu_{6}$)

^RR(0.0)

K = 1

^RR(1,1)

F

K = 2

EDITORS'CHOICE

EDITED BY GILBERT CHIN AND JAKE YESTON

3 October 2008, Science

CHEMISTRY Spinning in Place

Unlike macroscopic objects, molecules vibrate and rotate in discrete increments To uncover the underlying quantummechanical restrictions governing such behavior, spectroscopists induce specific patterns of motion through light absorp tion. Thus, the molecules under study must be free to move about, but unless they are to some degree restricted, the flurry of different movements can be hard to disentan gle. A promising compromise is the use of para hydrogen (p-H₂) matrices. When p-H (H, with oppositely oriented nuclear spins is cooled to low temperature, it forms an unusual medium, termed a quantum solid in which the nuclei delocalize in space. Consequently, quest molecules embeddee in a matrix of this solid retain a certain amount of flexibility. Lee et al. show through infrared absorption spectroscopy that CH₂F molecules can rotate about the C-F axis in such a matrix, but are restricted from tumbling in orthogonal directions. The study bolsters the utility of p-H, matrices for precise spectral characterization of small molecules. — JSY

J. Chem. Phys. 129, 104502 (2008)

*Helen Pickersgill is a locum editor in Science's editorial department.

Developing a new therapy for infections is an expensive and that may give relief for less tin develop the agent. Hence, de resistance by administering di tion is a currently favored stra groups show this may not be implement wisely. By experim modeling, Heareness et al, m tuitive discovery that synergis

MICROBIOLOGY Adapting to Drug Res

may actually accelerate the ev ance. In fact, antagonistic dru effective at forestalling resista because as one drug becomes suppressive effect on the othe unmasks the potency of the se course, the precise outcome of drug ratios, doses, pharmacol modes of action.

pairs, such as doxycycline and

Developing policies for the of drug combinations requires eling, Boni et al. compared the the standard wait-and-switch of drugs for malaria control wi ous deployment of multiple d shows that if three different drugs are offered for use at the same time within a malar ious population, the clinical burden is reduced, the emergence of resistance is delayed by two- to fourfold, and the number of failed treatments is almost halved. — CA Proc. Natl. Acad. Sci. U.S.A.

105, 13977, 14216 (2008)

DEVELOPMENT Signal Stability

Chordin and BMP signaling de trends across the Xenopus em between them the axis from o and destinations in between. between these and other factor plex regulatory interactions, i negative and positive feedbac predictions from some combi

3 OCTOBER 2008 VOL 322 SCIEN Published by AA

para-H₂ matrices

19

Diminished Cage Effect

In situ photolysis: The most straight-forward experiments $CH_3S \leftarrow CH_3SSCH_3 \rightarrow H_2CS + CH_3SH$ $CH_3O \leftarrow CH_3ONO \rightarrow HNO + H_2CO$ JCP 133, 164316 (2010)JCP 147, 154305 (2017)

 $CH_{3}OSO \leftarrow CH_{3}OSOCI$ $C_{2}H_{3}C(O) \leftarrow C_{2}H_{3}C(O)CI$ $CH_{3}CO \leftarrow CH_{3}C(O)CI$

anti-, gauche- $C_2F_4I \leftarrow CF_2ICF_2I$

 $(Z) - \bullet C_2 H_3 C(CH_3) I \leftarrow (Z) - (CH_2 I) H C = C(CH_3) I$

 $(E) - \bullet C_2 H_3 C(CH_3) I \leftarrow (E) - (CH_2 I) H C = C(CH_3) I$

n-propyl $\leftarrow CH_3CH_2CH_2I$

i-propyl \leftarrow CH₃CHICH₃

JCP 136, 124510 (2012) JCP 139, 084320 (2013) JCP 140, 244303 (2014)

PCCP 20, 12650 (2018)

JMS 363, 111170 (2019)

JPCA 124, 5887 (2020)

Vibrations of CH₃O

Jahn-Teller Distortion
Spin-Orbit interaction
Ground state: ²E_{1/2} and ²E_{3/2}

Degenerate modes: 4 components No IR spectrum except the CHstretching region (?) (Curl, JCP 2009)

Identification of Lines of CH₃O

J. Mol. Spectrosc. 310, 57 (2015)

and a superior of the second and the superior of the superior of the function of the function

para-H₂ matrices

Diminished Cage Effect

Photo-induced bimolecular reactions $CH_3 + SO_2 \rightarrow CH_3SO_2$ $CI + C_2H_4 \rightarrow CH_2CH_2CI$ $CI + CH_3CH=CH_2 \rightarrow CH_2CHCICH_3$ $CI + CH_2=CH-CH=CH_2 \rightarrow CH_2-CH=CH-CH_2CI$ $CI + isobutene \rightarrow C(CH_3)_2CH_2CI & CH_2C(CH_3)_2CI$ $CI + isobutene \rightarrow C(CH_3)_2CH_2CI & CH_2C(CH_3)_2CI$

CI + isoprene \rightarrow 1- • CIC₅H₈ & 4- • CIC₅H₈

 $\begin{array}{c} H_{3}C_{H_{1}} \\ H_{3}C_{H_{1}} \\ H_{1} \\ H_{1}$

JPCA 121, 8771 (2017)

para-H₂ matrices

24

Protonated Species

(a) During deposition

 $H_{2} + e^{-} \rightarrow H_{2}^{+} + 2e^{-}$ $H_{2}^{+} + H_{2} \rightarrow H_{3}^{+} + H$ $H_{3}^{+} + PAH \rightarrow H^{+}PAH + H_{2}$ $H + PAH \rightarrow HPAH$ $H^{+}PAH + e^{-} \rightarrow HPAH$

(b) After long period in darkness or upon UV irradiation

 $H^+PAH + e^- \rightarrow HPAH$ $H + PAH \rightarrow HPAH$

Neutral PAH: identified without E-gun H⁺PAH : appears with E-gun and decreases with time HPAH : appears with E-gun and increases with time

para-H₂ matrices

Protonated Species

Polycyclic aromatic hydrocarbon (PAH) JCP 136, 154304 (2012) JPCA 117, 13680 (2013) $C_{6}H_{7}^{+}, C_{5}H_{5}NH^{+}$ naphthalene, 1-, 2-C₁₀H₉⁺ PCCP 15, 1907 (2013) pyrene, $1-C_{16}H_{11}^+$ JPCL 4, 1989 (2013) coronene, $1-C_{24}H_{13}^+$ Angew. Chem. 53, 1021 (2014) ovalene, $7 - C_{32}H_{15}^+$ ApJ 825, 96 (2016) corannulene, hub-C₂₀H₁₀⁺ ACSESC 2, 1001 (2018) fluoranthene, 3-, 9-, 10-C₁₆H₁₁+ PCCP 21, 1820 (2019) Small protonated species KrH+Xe, KrH+Kr, XeH+Xe JPCA 119, 2651 (2015) $H^+(CO_2)_2$, t-HOCO+ JCP 145, 014306 (2016) HOCS⁺ & OCSH⁺ JCP 145, 164308 (2016) HSCS⁺ PCCP 19, 9641 (2017) H⁺(CO)₂, N₂H⁺N₂ JCP 153, 084305 (2020) PCCP 19, 20484 (2017)

Proton Affinity (kJ/mol) H_2 424 495 N_2 CO_2 548 C₆H₆ 759 $C_{10}H_{8}$ 803 $C_{24}H_{12}$ 862 $C_{6}H_{5}N$ 930

25

Advantages

- 1. Negligible fragmentation
- 2. True IR intensity
- 3. Wide spectral coverage
- 4. Narrow linewidth with good S/N
 - isomers
- 5. Isotopic experiments
- 6. Hydrogenated species

Unidentified infrared (UIR) emission

UIR emission

PAH hypothesis

Peeters, E., Hony, S., Van Kerckhoven, C., *et al.*, 2002, A&A, 390, 1089

Electronic ground state

Polycyclic aromatic hydrocarbon (PAH) has been postulated to be an emitter of UIR. However, **no exact correspondences were found for neutral PAHs**.

 \rightarrow Protonated PAH (H⁺PAH) might be possible carriers.

Comparison of 1-C₁₀H₉⁺

PCCP 15, 1907 (2013)

rene moments of the bear of the hard on her hard and her to held the held the herd and her all me

para-H₂ matrices

Hydrogenated Species

Polycyclic aromatic hydrocarbon (PAH)

- C_6H_7 , C_5H_5NH naphthalene, 1-, 2-C₁₀H₉ pyrene, $1 - C_{16}H_{11}$ coronene, 1-C₂₄H₁₃ ovalene, 7-C₃₂H₁₅+ corannulene, rim-HC₂₀H₁₀ • ONH(OH) trans-1-methylallyl $3-C_5H_4(OH)NH$
- 1,1-, 1,2-dimethylallyl orthc

2,3-

	•
- and para-HC6H5NH2	JPCA 124, 7500
dihydropyrrol-2-yl and 2,3	3-dihydropy

JCP 136, 154304 (2012)	JPCA 117, 13680 (2013)
PCCP 15, 1907 (2013)	
JPCL 4, 1989 (2013)	
Angew. Chem. 53, 1021	(2014)
ApJ 825, 96 (2016)	
JCP 151, 044304 (2019)	
PCCP 19, 16169 (2017)	
JCP 137, 084310 (2012)	
JCP 149, 014306 (2018)	
JCP 149, 204304 (2018)	
2 JPCA 124, 7500 (2020	
2.3-dihvdropyrrol	- 3- V JCP <i>153</i> , 164302 (2020

Efficient Hydrogenation Reaction in p-H₂

H atoms by UV/IR irradiation of $Cl_2/p-H_2$ $Cl + H_2$ (v = 1) \rightarrow HCl + H (D. Anderson) (2) UV on HONO: OH + $H_2 \rightarrow H_2O + H$ (3) UV on H_2O_2 : OH + $H_2 \rightarrow H_2O + H$

Isoquinoline (iso-C₉H₇N)

para-H₂ matrices

32

Hydrogen reactions

Complex Organic Molecules (COM) and Origin of Life

Linnartz et al., Int. Rev. Phys. Chem. 34, 205 (2015)

H-abstraction Reactions in p-H₂

Connection between CH₃NH₂ & CH₂NH

Comm. Chem. 5, 62 (2002)

more many and real maker and the mend on herden to helder the belle the all the real and

Isomerization from trans- to cis-NMF

Uphill isomerization by H reactions

JACS 144, 12339 (2022)

Uhl blild hill the little of her hard which we will be hard a second of the second of

Matrix Isolation

para-H₂ matrices

Volume 20 Number 8 28 February 2018 Pages 5321-5986

Physical Chemistry Chemical Physics rsc li/nccr

Themed issue: Theory, experiment, and simulations in laboratory astrochemistry

ISSN 1463-9076

asashi Tsuge, Yuan-Pern Lee et al. pectroscopy of prospective interstellar ions and radicals isolated in ara-hydrogen matrices

Phys. Chem. Chem. Phys. 20, 5344 (2018)

PERSPECTIVE

Check for updates Cite this: Phys. Chem. Chem. Phys., 2018, 20, 5344

Spectroscopy of prospective interstellar ions and radicals isolated in para-hydrogen matrices

Masashi Tsuge, 💿 † * Chih-Yu Tseng and Yuan-Pern Lee 💿 * * b

Phys. Chem. Chem. Phys. 16, 2200 (2014)

PERSPECTIVE

Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices

Cite this: Phys. Chem. Chem. Phys 2014 16 2200

Mohammed Bahou,^a Prasanta Das,^a Yu-Fang Lee,^a Yu-Jong Wu^b and Yuan-Pern Lee*^a

J. Chin. Chem. Soc. 69, 1159 (2022)

Hydrogen-atom tunneling reactions in solid para-hydrogen and their applications to astrochemistry

Karolina Anna Haupa^{1,2} | Prasad Ramesh Joshi¹ | Yuan-Pern Lee^{1,3}

Spectroscopy of molecules confined in solid para-hydrogen

EI SEVIE

Masashi Tsuqe^{a,b}, Yuan-Pern Lee^{a,c}

MOLECULAR AND LASER SPECTROSCOPY

Advances and Applications

Volume 2

Edited by V.P. Gupta and Yukihiro Ozaki

Resonant Four-wave Mixing Gas phase

Highly predissociative state

P₂(8)

P₁(8)

(A)

(B)

(C)

Transient Population Gratings

CH in a flame Br₂ $B^{3}\pi_{\mu}$ - $X^{1}\Sigma_{\sigma}^{+}$ CH $B^2\Sigma^-$ CH C $^{2}\Sigma^{-}$ CH $D^{2}\Sigma^{-}$ $_{2}(500)$ CH₃SA²A₁

JCP 103, 9941 (1995) CPL 269, 22 (1997) JCP 109, 3824 (1998) CPL 297, 300 (1998) JPCA 103, 6162 (1999) JCP 111, 4942 (1999) CPL 362, 235 (2002) JCP 119, 12335 (2003) JCP 122, 124313 (2005) JMS 238, 213 (2006)

David Chandler

VUV absorption/Photoionization Gas phase Matrix

Synchrotron radiation

Astronomical species H₂O dissociation in matrices CH₃SO, CH₃SOH phoitoionization C₂H₅SO ionization HSCI, HSSSH, SSCI, HSSCI ionization H₂O fractionation (Mars) **Deuterated ethane** (Jupiter) HCI/DCI absorption (Venus) CH₃OH & deuterated absorption H₂O/HOD/D₂O (with theory) NH₃ & deuterated NH₃ fractionation (Jupiter)

GRL 26, 3657 (1999) Water on Mars D/H ratio gives the amount of water escaped $X(t) = X(0)[(W+L)/W]^{1-F}$ Dissociation of water vapor with subsequently $hv = V_e - V_a$ escape of H, H_2 , and O is the primary mechanism of water loss from Mars. Preferential escape of the light isotope could

- lead to the enrichment of the heavy isotope.
 PHIFE : Photo-Induced Fractionation Effect
- In the atmosphere of Mars, photolysis of HDO is 2-3 times less efficient than that of H₂O.
 The loss of water from Mars, based on this work, was estimated to be 50 m.

41

Mulliken Difference Potenti

Highly vibrationally excited states or weak transitions

JPCA 109, 7854 (2005) CD₃OO, JCP 127, 044311 (2007) C₆D₅O, JCP 129, 154307 (2008)

 $S_l = 2.92 \times 10^{-29}$ m (P branch only) 4.18×10⁻²⁹ m including R branch

42

Richard Saykally

band	origin / cm-1	<v' p(x) 0> C m</v' p(x) 0>	S _b / m	
0-0		3.6632*10⁻³¹		
0-1	2143.2711	-3.53*10 ⁻³¹	1.00*10 ⁻¹⁹	
0-2	4260.0622	2.22*10 ⁻³²	7.83*10 ⁻²²	128
0-3	6350.4391	-1.36*10 ⁻³³	4.42 *10 ⁻²⁴	177
0-4	8414.4693	6.95*10 ⁻³⁵	1.53*10 ⁻²⁶	289
0-5	10452.2222	3.27*10⁻³⁶	4.18*10 ⁻²⁹	366

Mass-selected IR spectrum Gas phase

VUV ionization/IR excitation/TOF detection

Fourier-Transform IR Spectrometer

HCI Emission from CH₂CHCI + 193 nm

Second-Generation TR-FTIR

COS A STREET

2.5 ns / 12.5 μs 0.075 cm⁻¹

Step-scan FTIR Gas phase

Absorption of Transient Species

CICO CISO CICS CH₂SO, CH₂SOO, CH₂SO CH₃OSO $C_6H_5SO_2$ $CH_{3}OO$ *c*-, *t*-CH₃C(0)OO C₆H₅CO $C_{6}H_{5}C(0)OO$ *c*-, *t*-CICOOH

CPL 333, 365 (2001) JCP 120, 3179 (2004) JCP 126, 134310 (2007) JCP 124, 244301(2006) JCP 133, 184303 (2010) JCP 825, 094304 (2011) JCP 126, 134311 (2007) JCP 127, 234318 (2007) JCP 132, 114303 (2010) JPCA 116, 6366 (2012) JCP 135, 224302 (2011) JCP 130, 174304 (2009)

Photolysis at 248 nm of $\rm CH_3SSCH_3/O_2$ (1/700, total 220 Torr) at 260 K

A (1110 cm⁻¹), B (1397 cm⁻¹): *syn*-CH₃SOO C (1071 cm⁻¹): CH₃SO E (1170 cm⁻¹): CH₃S(O)OSCH₃ F (1120 cm⁻¹): CH₃S(O)S(O)CH₃

Importance of Criegee Intermediates

Criegee mechanism

important for the removal of unsaturated hydrocarbons and for the production of OH in the atmosphere

Infrared Spectrum of CH₂OO

Comparison of Experiments with Calculations

mode	e sym.	experiment	NEVPT2/aVDZ		CAS(14,12)	CCSD(T)	description ^a
			harmonic	anharmonic	/VDZ	/aVTZ	
\mathbf{v}_1	Α'		3370 (5) ^b	3149	3215	3290	a-CH str.
\mathbf{v}_2	Α'		3197 (1)	3030	3065	3137	s-CH str.
\mathbf{v}_3	Α'	1435(33) ^c	1500 (52)	1458	1465	1483	CH ₂ scissor /CO str.
\mathbf{v}_4	Α'	1286 (42)	1338 (100)	1302	1269	1306	CO str. /CH ₂ scissor
v_5	Α'	1241 (39)	1235 (33)	1220	1233	1231	CH ₂ rock
ν_6	Α'	908 (100)	916 (100)	892	849	935	OO str.
v_7	Α'		536 (1)	530	537	529	COO deform
ν_8	Α"	848 (24)	856 (31) KIO	862	CH ₂ wag
v_9	Α"		620 (2)			632	CH ₂ twist
refe	erence	this work	this work	INIS WORK	10	13	

Dimer of CH₂OO – *Zwitterionic Character*

Yu-Te Su¹, Hui-Yu Lin¹, Raghunath Putikam¹, Hiroyuki Matsui¹, M. C. Lin^{1*} and Yuan-Pern Lee^{1,2*}

Spectra of ICH₂OO Adduct

JPCL 6, 4610 (2015)

NEVPT2/aVDZ B3LYP/aug-cc-pVTZ-pp

Larger Criegee Intermediates

- Two conformers
- Torsion
- low-frequency mode
- hot bands

Added NO/NO₂

Ozonolysis of Isoprene

IR Spectra of MVKO

- Fission of the terminal allylic C–I bond rather than the central vinylic C–I bond.
- With O₂ at 35 Torr, the Criegee intermediate syn-trans-MVKO was observed; the syn-cis-MVKO might contribute slightly to the observed spectrum.
- With O₂ at 80–347 Torr, the reaction adduct 3iodo-but-1-en-3-yl peroxy [C₂H₃C(CH₃)IOO] radical was observed.

MACRO in the Laboratory

In laboratory studies, MACRO has been produced in the photolysis of

1,3-diiodo--2-methyl-prop-1-ene, CH₂IC(CH₃)CHI, in the presence of O₂.

kcal mol⁻¹

Mechanism requires verification

Vansco *et al.* JACS, **141**, 15058 (2019)

Summary of IR Spectra of MAC Cai, Su & Lee, Commun. Chem. 5, 26 (2022)

- man and a second of the hald the hald the hald and the man and the man and the hand and the hald the h
- Fission of the allylic C–I bond rather than the central vinylic C–I bond.
- With O₂ at 20 Torr, the Criegee intermediate anti-trans-MACRO was observed; the syn-cis-MACRO might contribute slightly to the observed spectrum.
- With O₂ at 86–346 Torr, the reaction adduct 3hydroperoxy-3-iodo-2methyl-prop-1-ene [CH₂C(CH₃)CHIOO] & 3-hydroperoxy-1-iodo 2-methyl-prop-1-ene [(CHI)C(CH₃)CH₂OO] were observed.

and the she is a she to she had a so a she a second

Resonance Stabilization of MVKO & MACRO

in more thank the term was here the been and the bear of the hard an hard and the hard the hard the hard the hard and an and the hard the antianti-transsyn-transsyn-(CH₃)₂COO^[c] CH₃CHOO^[b] CH₃CHOO^[b] MVKO^[a] MACRO r(O–O) /Å 1.365 1.353 1.380 1.381 1.380 r(C–O) /Å 1.270 1.266 1.279 1.297 1.284 v(00) /cm⁻¹ 917 948 871 884 887

[a] Bond distances predicted with the CCSD(T)/cc-pVTZ method; *J. Phys. Chem. A.* **2020.** [b] Bond distances predicted with the NEVPT2(8,8)/aug-cc-pVDZ method; *Nat. Comm.* **2015**, *6*, 7012. [c] Bond distances predicted with the B3LYP/aug-cc-pVTZ method; *J. Chem. Phys.* **2016**, *145*, 154303.

Step-scan FTIR Gas phase

Reactions of Criegee Intermediates

 $CH_2OO + SO_2$ $CH_2OO + HC(O)OH$ $CH_{2}I + O_{2}$ $CH_2OO + HCI$ $CH_3CHI + O_2$ $CH_2OO + CH_3C(O)OH$ $CH_2OO + HNO_3$

JCP 148, 064301(2018) PCCP 21, 21445 (2019) PCCP 22, 17540 (2020) PCCP 23, 11082 (2021) JPCA 125, 8373 (2021) PCCP 24, 18568 (2022)

62

JPCA 126, 5738 (2022)

1. Reaction of CH₂OO + CH₃C(O)OH conformation-dependent reactivity · cm-PCCP 24, 18568 (2022)

PES of the reaction CH₂OO + CH₃COOH

4.0119.7 1.381 1.458 0.968 H 101.3 108.1 112.0 0 1.367 .432 123.7 1.201 H 1.196 1.093 113.2 123.3 126.9 497 1.381 0 1.392 <u>64</u>

1.822

124.

1.212

124.4 1.501

Identification of groups C & D to HPMA (P1 & P2)

 $HPMA (P1) \rightarrow FAA + H_2O, \qquad k_1$

HPMA (P2) \rightarrow FAA + H₂O, k_2

HPMA, FAA \rightarrow pump away k_3

 $k_3 = 82 \pm 2 \text{ s}^{-1} (104 \pm 25)$ $k_2 = 1000 \pm 34 \text{ s}^{-1} (983 \pm 41)$ $k_1 = 67 \pm 1 \text{ s}^{-1} (44 \pm 25)$

Conformation dependent decay

2. Reaction of CH₃CHOO + HCl conformation-independent products interference by secondary reactions

· cm⁻¹

PES of CH₃CHOO + HCl

and and and the second and and the second and the second of the second o

Identification of group B: anti-CEHP

Identification of groups C & D: CH₃C(O)Cl and H₂O

Summary of CH₃CHOO + HCl

and and the second of the second and and the second of the

High-resolution QCL Absorption System

Spectrum of CH₂OO (v_6) at 0.0015 cm⁻¹

Rotational Perturbations

Analysis of Perturbation

Interaction between levels $K_a = 6$ of mode v_6 (O–O stretching) and levels $K_a = 8$ of mode v_8 (CH₂-wagging)

Detectivity of CH₂OO

≻ Welz et al.

 $\tau \cong 2 \text{ ms}$

 $[CH_2I]_0 \cong 9 \times 10^{11}$ molecule cm⁻³

> Our FTIR work $\tau \simeq 50 \ \mu s$

 $[CH_2I]_0 \cong 4 \times 10^{13}$ molecule cm⁻³ detectivity $\cong 2 \times 10^{12}$ molecule cm⁻³

> Our QCL system

 $\begin{array}{l} \mathsf{CH}_2\mathsf{I}_2 = 7.6 \text{ mTorr} \\ (2.4 \times 10^{14} \text{ molecule cm}^{-3}) \\ \mathsf{O}_2 = 3.2 \text{ Torr} \\ [\mathsf{CH}_2\mathsf{OO}] \cong 1.2 \times 10^{12} \text{ molecule cm}^{-3} \end{array}$

Min. detectivity $\cong 1.1 \times 10^{10}$ molecule cm⁻³ ~200 times better than FTIR

New Setup: Simultaneous IR/UV Absorption for Kinetics

Miller half there many how many and war where a not whether a many many and the second walk the

77

Formation rate coefficient

Self-reaction rate coefficient

Step-scan FTIR & QCL J. Chin. Chem. Soc. 61, 47 (2014)

MOLECULAR AND LASER SPECTROSCOPY

Advances and Applications

Volume 3

Mini Review

JOURNAL OF THE CHINESE CHEMICAL SOCIETY

Transient Infrared Absorption Spectra of Reaction Intermediates Detected with a Step-scan Fourier-transform Infrared Spectrometer

Yu-Hsuan Huang,^a Jin-Dah Chen,^a Kuo-Hsiang Hsu,^a Li-Kang Chu^b* and Yuan-Pern Lee^{a,c}*

CHAPTER

Step-scan FTIR techniques for investigations of spectra and dynamics of transient species in gaseous chemical reactions

Li-Kang Chu¹, Yu-Hsuan Huang² and Yuan-Pern Lee^{3,4,5}

CHAPTER

5

Quantum cascade lasers and their applications to spectral and kinetic investigations of reactive gaseous intermediate species

Edited by V.P. Gupta

Future Perspectives para-H₂ matrix isolation

Fundamental understanding of hydrogen diffusion/tunneling

- Detailed mechanism
- Anonymous temperature behavior
- Spectral (IR) signature of H and H⁺
- Protonated/cationic PAH
 - Larger PAH (evaporation, new protonation/ionization methods)
 - UV-induced IR emission
 - Improved calculations (anharmonic, Fermi-resonance)

Hydrogen reactions

- Other hydrogen sources
- More examples of H-induced uphill isomerization/fragmentation
- More prebiotic reactions (RNA precursors, enantiomer-selectivity)
- Electronic transitions
 - More data for matrix shifts, relaxation, and phonon interactions
 - Real identification to DIB

Future Perspectives gas-phase transient spectroscopy

Improved sensitivity of step-scan FTIR in absorption mode

- Hardware improvement (light source, digitizer, Herriott cell)
- Data processing (2D-correlation, spectral reconstruction, linear prediction)
- Supersonic jet or discharge jet
- > New digitizer (1 μ s, 20 bit) for kinetics
- Al-assisted data analysis

Quantum-cascade laser

- Improved lasers (fill the spectral gap, wider coverage, mode-hop free)
- Built-in wavelength calibration (frequency comb)
- Multiplex methods (UV, several QCL)
- QCL-based dual-comb (spectral & temporal resolution)
- Al-assisted spectral analysis

ACKNOWLEDGEMENTS

Post-doctors & visiting scientists are needed!

Funding:

Ministry of Education Republic of China (Taiwan)

新世代功能性物質研究中心

Center for Emergent Functional Matter Science, CEFMS

