2013.11.13 Carl-Zeiss Lecture 2 IPHT Jena

Resonance Raman Spectroscopy; Theory and Experiment

Hiro-o HAMAGUCHI

Department of Applied Chemistry and Institute of Molecular Science, College of Science, National Chiao Tung University, Taiwan

Landmarks of Raman Spectroscopy (HH view)

Kramers-Heisenberg-Dirac Dispersion Formula

Placzek Polarizability Theory

Albrecht Vibronic Theory

Resonance Raman Spectroscopy

Time-resolved Raman Spectroscopy

(Non-linear Raman, SERS, Raman Microspectroscopy, still moving)

Raman microspectroscopy of Living Cells

Theoretical Framework of Raman Spectroscopy

K-H-D Dispersion Formula

Off-resonance

On-resonance

Placzek Polarizability Theory

Albrecht Vibronic Theory

Selection rule

$$\left(\frac{\partial \alpha_{\mu\nu}}{\partial Q_{\mu}}\right)_{0} \neq 0, \ \Delta \mathbf{V} = \mathbf{1}$$

Polarization rule

Totally symmetric mode: $0 \le \rho < 0.75$ Non-totally symmetric mode: $\rho = 0.75$ Selection ruleTotally symmetric mode: $\Delta v \geq 1$ Non-totally symmetric mode: $\Delta v = 1,2$ Polarization ruleTotally symmetric mode: $0 \leq \rho < \infty$ Non-totally symmetric mode: $0 \leq \rho < \infty$

Theory of Raman Scattering (1)

Kramers-Heisenberg-Dirac dispersion formula

P. A. M. Dirac, Principle of Quantum Mechanics

PAM Dirac (1902-1984)

$$F_{s}R^{2} = \frac{\varpi_{s}^{3}\varpi_{i}}{c^{4}} |e_{s}\alpha e_{i}|^{2} F_{i}$$

$$\alpha_{\rho\sigma} = \sum_{e \neq mn} \{\frac{\langle m | D_{\sigma} | e \rangle \langle e | D_{\rho} | n \rangle}{E_{e} - E_{m} - E_{i} - i\Gamma_{e}} + \frac{\langle m | D_{\rho} | e \rangle \langle e | D_{\sigma} | n \rangle}{E_{e} - E_{n} + E_{i} + i\Gamma_{e}} \}$$

Quantum Theory of Raman Scattering

The initial and final states of Raman scattering

In the quantum theory of Raman scattering, we calculate the probability for an optical process in which an incident photon with angular frequency ω_i and polarization vector \mathbf{e}_i is annihilated and a new scattered photon with ω_s and \mathbf{e}_s is created with a concomitant molecular transition from the initial state |m> to the final state |n>.

The photon number state is expressed as $|n_i,n_s>$, where n_i stands for the number of phton with ω_i and e_i , ns that for ω_s and e_s . The initial state |i> and the final state |f> of Raman scattering are expressed as the products of the photon and the molecular states as;

 $|i>=|n_i,n_s>|m>$ $|f>=|n_i-1,n_s+1>|n>$

The second-order perturbation theory

The intermediate states of Raman scattering

The Raman scattering process is obtained as a second order perturbation of the light-matter interaction. There are two kinds of intermediate states that can combine the initial and final states by a one-photon transition induced by a perturbation μE .

|v₁>=|n_i-1,ns>|e> |v₂>=|ni,n_s+1>|e>

 $|v_1\rangle$ corresponds to the state in which an incident photon is annihilated with a molecular transition from $|m\rangle$ to $|e\rangle$ (figure-a, absorption resonance) and $|v_2\rangle$ to that in which one scattered photon is created with $|m\rangle$ to $|e\rangle$ (figure-b, emission resonance).

The contribution of the second intermediate state is characteristic of Raman scattering that distinguishes Raman scattering from fluorescence.

Kramers-Heisenberg-Dirac dispersion formula

In the quantum theory of Raman scattering, it is convenient to use photon flux *F* in stead of intensity *I*, $I=h\omega C/2\pi$, where $h\omega/2\pi$ is the photon energy. *F* indicates the number of photons transmitted per unit time through unit area. The second order perturbation theory gives the following formula that connects the scattered photon number per unit time *F*_sR² and the incident photon flux *F*_i.

Here, e_i and e_s are the unit polarization vectors of the incident and scattered photons, $a_{\rho\sigma}$ is the Raman scattering tensor with σ and ρ being (x,y,z), and D_{σ} and D_{ρ} are the $\rho\sigma$ component of the electric dipole moment.

Theoretical Framework of Raman Spectroscopy

K-H-D Dispersion Formula

Off-resonance

On-resonance

Placzek Polarizability Theory

Albrecht Vibronic Theory

Selection rule

$$\left(\frac{\partial \alpha_{\mu\nu}}{\partial Q_{\mu}}\right)_{0} \neq 0, \ \Delta \mathbf{V} = \mathbf{1}$$

Polarization rule

Totally symmetric mode: $0 \le \rho < 0.75$ Non-totally symmetric mode: $\rho = 0.75$ Selection rule Totally symmetric mode: $\Delta v = \ge 1$ Non-totally symmetric mode: $\Delta v = 1,2$ Polarization rule

Totally symmetric mode: 0≤ρ<∞

Non-totally symmetric mode: 0≤ρ<∞

Placzek's polarizability theory of off-resonance Raman scattering By introducing an adiabatic approximation, |m >=|g]|i, |n>=|g]|f, |e>=|e]|v, we obtain the formula for vibrational Raman scattering.

$$\begin{split} \alpha_{\rho\sigma} &= (i | [g | \sum_{e \neq g} \sum_{v} \{ \frac{[g | D_{\sigma} | e] | v)(v | [e | D_{\rho} | g]}{E_{ev} - E_{gi} - E_{i} - i\Gamma_{e}} \\ &+ \frac{[g | D_{\rho} | e] | v)(v | [e | D_{\sigma} | g]}{E_{ev} - E_{gf} + E_{i} + i\Gamma_{e}} \} | g] | f \rangle \end{split}$$

In off-resonance Raman scattering, $E_{ev}-E_{gi} \gg E_i$ and therefore $E_{ev}-E_{gi}-E_i$ is much larger than the vibrational energies. Then $E_{ev}-E_{gi}-E_i+i\Gamma \sim E_e-E_g-E_i$ holds with a good approximation. Then the closure property $\Sigma|v><v|=1$ simplifies the KHD formula to the following form.

$$\begin{split} \alpha_{\rho\sigma} &\cong (\mathbf{i} \mid \alpha_{\rho\sigma} \mid \mathbf{f}) \\ \alpha_{\rho\sigma} &= \sum_{e \neq g} \left\{ \frac{[g \mid D_{\sigma} \mid e][e \mid D_{\rho} \mid g]}{E_{e} - E_{g} - E_{i}} + \frac{[g \mid D_{\rho} \mid e][e \mid D_{\sigma} \mid g]}{E_{e} - E_{g} + E_{i}} \right\} \end{split}$$

The Raman scattering tensor component $a_{\rho\sigma}$ is approximately given by the vibrational matrix element of the polarizability tensor component $\alpha_{\rho\sigma}$ (Placzek polarizability theory).

Selection rule for off-resonance Raman scattering

The initial vibrational state |i) and the final vibrational state |f) are expressed as the products of vibratioal states,

$$|i\rangle = \Pi |v_{ki}\rangle$$
 (12), $|f\rangle = \Pi |v_{kf}\rangle$, (13)

where v_{ki} and v_{kf} are the vibrational quantum numbers of the k-th vibrational mode in the initial and final states.

The polarizability component $\alpha_{\rho\sigma}$ is expanded into a power series of normal coordinates $Q_k.$

$$\alpha_{\mu\nu} = (\alpha_0)_{\mu\nu} + \sum_{\mathbf{k}} \left(\frac{\partial \alpha_{\mu\nu}}{\partial Q_{\mathbf{k}}} \right)_0 Q_{\mathbf{k}}$$
(14)

Under a harmonic approximation, the vibrational matrix element of the polarizability component is given in the following form.

$$(\mathbf{i} | Q_{\mathbf{k}} | \mathbf{f}) \propto \delta \mathbf{v}_{\mathbf{k}\mathbf{i}}, \mathbf{v}_{\mathbf{k}\mathbf{f} \pm \mathbf{l}} \prod_{\mathbf{l} \neq \mathbf{k}} \delta \mathbf{v}_{\mathbf{l}\mathbf{i}}, \mathbf{v}_{\mathbf{f}}$$
(15)

We finally obtain the selection rule of off-resonance Raman scattering.

 $\left(\frac{\partial \alpha_{\mu\nu}}{\partial Q_{k}}\right)_{0} \neq 0 \quad (16) \quad \text{and} \quad \Delta v_{k} = v_{kf} - v_{ki} = \pm 1 \quad (17)$

Theory of Raman Scattering (2) Polarizability Theory of Vibrational Raman Scattering

Off-resonance condition, 2) Non-degenerate condition 1)

$$\begin{split} \alpha_{\rho\sigma} &\cong (\mathbf{i} \mid \alpha_{\rho\sigma} \mid \mathbf{f}) \\ \alpha_{\rho\sigma} &= \sum_{\mathbf{e} \neq \mathbf{g}} \{ \frac{[g \mid D_{\sigma} \mid \mathbf{e}][\mathbf{e} \mid D_{\rho} \mid g]}{E_{\mathbf{e}} - E_{\mathbf{g}} - E_{\mathbf{i}}} + \frac{[g \mid D_{\rho} \mid \mathbf{e}][\mathbf{e} \mid D_{\sigma} \mid g]}{E_{\mathbf{e}} - E_{\mathbf{g}} + E_{\mathbf{i}}} \} \end{split}$$

Selection rule

$$\left(\frac{\partial \alpha_{\rho\sigma}}{\partial Q_{k}}\right)_{0} \neq 0, \ \Delta \mathbf{V} = \pm 1$$

Depolarization ratio $\rho = I_{\perp} / I_{//} = I_y / I_x = \frac{3G_s + 5G_s}{10G_o + 4G_s}$

G. Placzek (1905-1955)

 $a_{\rho\sigma} = a^0_{\rho\sigma} + a^a_{\rho\sigma} + a^s_{\rho\sigma}$ $G_0 = \Sigma(a_{\rho\sigma}^0)^2$, $G_a = \Sigma(a_{\rho\sigma}^a)^2$, $G_s = \Sigma(a_{\rho\sigma}^s)^2$

Totally symmetric mode: $G_0 \neq 0, G_a = 0, G_s \neq 0$ $0 \le \rho < 0.75$

Non-totally symmetric mode: $G_0=0, G_a=0, G_s\neq 0$ ρ=0.75

Depolarized Totally-symmetric Raman Band?

Sym. pecies	No.	Approximate type of mode	Selected value of frequency	Infrared	Raman	Comments
	and al	(Gae) (Liquid)		cm^{-1} (Gas)	cm^{-1} (Liquid)	
a	ν1	CH ₂ s-stretch	2957 D	ia	2957 (10) p	0 14 0
ag	Vo	CH ₂ scis	1445 C	ia	1445 (4b) dp	
	V3	CH ₂ wag	1304 C	ia	1304 (6) p	
	VA VA	CC stretch	1052 C	ia	1052 (4) p	124) (P2)
	V5	CCl stretch	754 C	ia	754 (10b) p	
	Ve	CCCl deform	300 C	ia	300 (8) p	
au	דע	CH ₂ a-stretch	3005 D	3005 W (liquid)	ia	SF (gauche v1, gauche v11).
	V8	CH ₂ twist	1123 B	1122.5 W	ia	6 2
	V9	CH ₂ rock	773 B	772.5 M	ia	61 12 1
Sector 1	V10	Torsion	123 C	123 M	ia	6
ba	V11	CH ₂ a-stretch	3005 D	ia	3005 (8b) dp	
100	V12	CH ₂ twist	1264 C	ia	1264 (3) dp	Tob of the
den	V13	CH ₂ rock	989 C	ia	989 (2) p	51 12 1
bu	V 14	CH ₂ s-stretch	2983 C	2983.3 M	ia	51 2. 10
	V15	CH_2 scis	1461 A	1460.6 S	ia	0
	V16	CH ₂ wag	1232 B	1232.3 S	ia	
	V 17	CCl stretch	728 C	728.3 VS	ia	DINA
	V 18	CCCl deform	222 C	222.3 W	ia	

T. Shimanouchi, Tables of Molecular Vibrational Frequencies, NSRDS-NBS 39, p. 97.

Polarization-resolved CARS Spectroscopy

Polarization rule: $tan \phi_R = \rho tan \theta$ (ρ ; Raman depolarization ratio)

p: ρ<0.75

Totally symmetric mode

dp: ρ=0.75

Non-totally symmetric mode

Polarization-resolved CARS Spectroscopy

Y. Saito, T. Ishibashi, H. Hamaguchi, J. Raman Spectrosc., 31, 725-730 (2000).

Polarization-resolved CARS Spectra of Liquid Cyclohexane

$$\mathbf{I}_{\mathbf{CARS}} = \left(A_{NR} + \sum_{R} \frac{H_{R} \mathbf{G}_{R}}{\mathbf{w}_{R} - (\mathbf{w}_{1} - \mathbf{w}_{2}) - i\mathbf{G}_{R}}\right)$$

Depolarization Ratios of Two e_q Bands of Cyclohexane

Depolarization Ratios of Two Totally-symmetric Bands of 1,2-dichloroethane

Depolarized Totally-symmetric Raman Band?

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 C 2 C 3 C 4 C 5 C 7 C	H ₂ s-stretch H ₂ scis H ₂ wag C stretch Cl stretch CCl deform H ₂ a-stretch H ₂ twist	2957 D 1445 C 1304 C 1052 C 754 C 300 C 3005 D	$\begin{array}{c} cm^{-1}\\ (Gas)\\ ia\\ ia\\ ia\\ ia\\ ia\\ 3005 \\ W \\ (licmid) \end{array}$	<i>cm</i> ⁻¹ (Liquid) 2957 (10) p 1445 (4b) dp 1304 (6) p 1052 (4) p 754 (10b) p 300 (8) p ia	$dp \rightarrow p$ SF (gauche ν_1 ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 C 2 C 3 C 4 C 5 C 7 C 3 C	H2 s-stretch H2 scis H2 wag C stretch Cl stretch Cl stretch H2 a-stretch H2 a-stretch H2 twist	2957 D 1445 C 1304 C 1052 C 754 C 300 C 3005 D	ia ia ia ia 3005 W	2957 (10) p 1445 (4b) dp 1304 (6) p 1052 (4) p 754 (10b) p 300 (8) p ia	$dp \rightarrow p$ SF (gauche ν_1 ,
ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10 ν11	2 C 3 C 4 C 5 C 6 C 7 C	H ₂ scis.	1445 C 1304 C 1052 C 754 C 300 C 3005 D	ia ia ia 3005 W	1445 (4b) dp 1304 (6) p 1052 (4) p 754 (10b) p 300 (8) p ia	$dp \rightarrow p$ SF (gauche ν_1 ,
ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10	3 C 4 C 5 C 6 C 7 C 3 C	H ₂ wag C stretch Cl stretch CCl deform H ₂ a-stretch H ₂ twist	1304 C 1052 C 754 C 300 C 3005 D	ia ia ia 3005 W	1304 (6) p 1052 (4) p 754 (10b) p 300 (8) p ia	SF (gauche v1,
ν4 ν5 ν6 ν7 ν8 ν9 ν10 ν11		C stretch Cl stretch CCl deform H ₂ a-stretch H ₂ twist	1052 C 754 C 300 C 3005 D	ia ia 3005 W	1052 (4) p 754 (10b) p 300 (8) p ia	SF (gauche v1,
$ \begin{array}{c} \nu_{5} \\ \nu_{6} \\ \nu_{7} \\ \nu_{8} \\ \nu_{9} \\ \nu_{10} \\ \nu_{11} \end{array} $		Cl stretch CCl deform H ₂ a-stretch H ₂ twist	754 C 300 C 3005 D	ia ia 3005 W	754 (10b) p 300 (8) p ia	SF (gauche v1,
<i>a_u</i> <i>ν</i> ₆ <i>ν</i> ₇ <i>ν</i> ₈ <i>ν</i> ₉ <i>ν</i> ₁₀ <i>ν</i> ₁₁		CCl deform	300 C 3005 D	ia 3005 W	300 (8) p ia	SF (gauche v1,
a _u ν ₇ ν ₈ ν ₉ ν ₁₀ ν ₁₁		H_2 a-stretch	3005 D	3005 W	ia	SF (gauche v ₁ ,
b _g ν ₈ ν ₉ ν ₁₀ ν ₁₁		H_2 twist	1199 D	(Inquia)	datasta ?	gauche ν_{11}).
b _g ν ₉ ν ₁₀ ν ₁₁	10		1123 D	1122.5 W	ia	6
$b_g \qquad \begin{array}{c} \nu_{10} \\ \nu_{11} \end{array}$		H_2 rock	773 B	772.5 M	ia	61
<i>b</i> _g <i>v</i> ₁₁	10 T	orsion	123 C	123 M	ia	ñ 2 1
and a state of the		H ₂ a-stretch	3005 D	ia	3005 (8b) dp	F. I. Statistical
V12	12 C	H_2 twist	1264 C	ia	1264 (3) dp	Tab C. KN
V13	L3 C	H_2 rock	989 C	ia	989 (2) p	01 1 1
b _u v ₁₄		H ₂ s-stretch	2983 C	2983.3 M	ia	D Six 1
V15	L5 C	\mathbf{H}_2 scis	1461 A	1460.6 S	ia	0 10
ν16	L6 C	H ₂ wag	1232 B	1232.3 S	ia	D
V17	17 C	Cl stretch	728 C	728.3 VS	ia	DIAN

T. Shimanouchi, Tables of Molecular Vibrational Frequencies, NSRDS-NBS 39, p. 97.

Resonance Raman scattering

RESONANCE RAMAN SPECTROSCOPIC STUDY ON IODINE IN VARIOUS ORGANIC SOLVENTS: SPECTROSCOPIC CONSTANTS AND HALFBAND WIDTHS OF THE I₂ VIBRATION* **

W. KIEFER[‡]

Sektion Physik der Universität München, Lehrstuhl J. Brandmüller, D-8 München 40, Germany

and

H. J. BERNSTEIN

Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada

Proc. Nat. Acad. Sci. USA Vol. 69, No. 9, pp. 2622-2626, September 1972

Resonance Raman Spectra of Hemoglobin and Cytochrome *c*: Inverse Polarization and Vibronic Scattering

(scattering tensor/porphyrin fluorescence)

THOMAS G. SPIRO AND THOMAS C. STREKAS

Department of Chemistry, Princeton University, Princeton, New Jersey 08540

Theoretical Framework of Raman Spectroscopy

K-H-D Dispersion Formula

Off-resonance

On-resonance

Placzek Polarizability Theory

Albrecht Vibronic Theory

Selection rule

$$\left(\frac{\partial \alpha_{\mu\nu}}{\partial Q_{\mu}}\right)_{0} \neq 0, \ \Delta \mathbf{V} = \mathbf{1}$$

Polarization rule

Totally symmetric mode: $0 \le \rho < 0.75$ Non-totally symmetric mode: $\rho = 0.75$ <u>Selection rule</u> Totally symmetric i

Totally symmetric mode: $\Delta v = \ge 1$

Non-totally symmetric mode: $\Delta v = 1,2$

Polarization rule

Totally symmetric mode: 0≤ρ<∞

Non-totally symmetric mode: 0≤p<∞

Vibrational Raman scattering and electronic resonance

In vibrational Raman scattering in the ground electronic state, the initial, final and intermediate states are expressed as the products of the electronic and vibrational parts as,

where [] stands for electronic state and [) for vibrational state; [g] is the ground electronic state and [e] the excited electronic state(s), and [i), [f),[v) are the initial, final and intermediate vibrational states, respectively.

In off-resonance Raman scattering (a), E_{ev} - E_{gi} » Ei and therefore many excited electronic states Σ [e])|v) contribute (virtual intermediate states). In pre-resonance Raman scattering, Ei become close to E_{ev} - E_{gi} and the vibrational states of the lowest excited electronic state |e] Σ |v) play the role of interemediate states. In rigorous resonance Raman scattering, E_{ev} - E_{gi} ~ Ei and one particular vibronic state |e]|v) dominates the scattering process.

For resonance Raman scattering, we need to take explicitly the vibronic nature of the intermediate states. We write the molecular Hamiltonian with three terms, electronoc, vibrational and vibronic terms..

$$H_{\rm mol} = H_{\rm mol}^{e} + H_{\rm mol}^{v} + H_{\rm mol}^{ev}$$

$$\tag{41}$$

We treat H_{mol}^{ev} as a perturbation to H_{mol}^{e} and H_{mol}^{v} . We consider three zero-order electronic states, ground electronic state $|g_0|$, the resonant excited electronic state $|e_0|$ and another excited electronic state $|s_0|$. They satisfy the following equations.

$$H_{mol}^{e}|g_{0}] = E_{g}^{0}|g_{0}]$$

$$H_{mol}^{e}|e_{0}] = E_{e}^{0}|e_{0}]$$

$$H_{mol}^{e}|s_{0}] = E_{s}^{0}|s_{0}]$$

$$(42)$$

$$(43)$$

$$(43)$$

$$(44)$$

Three vibrational states are the initial vibrational state |i), intermediate vibrational state |v) and the final vibrational state |f).

$H_{mol}^{v} i\rangle = E_i^{0} i\rangle$	(45)
$H_{mol}^{v} v\rangle = E_{v}^{0} v\rangle$	(46)
$H_{mol}^{v} f) = E_f^{0} f)$	(47)

With the first-order perturbation theory, we obtain an expression for the first-order intermediate electronic state (Herzberg-Teller expansion)

$$|\mathbf{e}] = \sum_{s \neq e_{\mathcal{Z}}} [\mathbf{s}_{0} | \left(\frac{\partial \mathcal{H}_{\mathbf{m}01}^{-e\mathbf{v}}}{\partial \mathcal{Q}_{\mathbf{k}}} \right)_{0} \mathcal{Q}_{\mathbf{k}} | \mathbf{e}_{0}] | \mathbf{s}_{0}]$$

Introducing all into the KHD formula, we obtain an expression for a Raman scattering tensor under a resonance condition (Albrecht 1961).

$$\begin{split} \alpha_{\rho\sigma} &= A + B \\ A &= \sum_{e \neq g} \sum_{v} - \frac{[g_0 \mid D_s \mid e_0] \mid [e_0 \mid D_\rho \mid g_0]}{E_e^{0} + E_v^{0} - E_g^{0} - E_i^{0} - E_i^{0} - i\Gamma_e} (i \mid v)(v \mid f) \\ B &= \sum_{e \neq g} \sum_{v} \sum_{i} \frac{[g_0 \mid D_e \mid s_0] [s_0 \mid (\partial H_{ev} / \partial Q_i)_0 \mid e_0] [e_0 \mid D_\rho \mid g_0]}{E_e^{0} + E_v^{0} - E_g^{0} - E_i^{0} - E_i^{0} - i\Gamma_e} (i \mid Q_i \mid v)(v \mid f) \\ &+ \sum_{e \neq g} \sum_{v} \sum_{i} \frac{[g_0 \mid D_e \mid e_0] [e_0 \mid (\partial H_{ev} / \partial Q_i)_0 \mid s_0] [s_0 \mid D_\rho \mid g_0]}{E_e^{0} + E_v^{0} - E_g^{0} - E_i^{0} - E_i^{-i} \Gamma_e} (i \mid v)(v \mid Q_i \mid f) \end{split}$$

Theory of Raman Scattering (3)

Albrecht's vibronic theory of resonance Raman Scattering

(a)

g

е

A. C. Albrecht, J. Chem. Phys. 34, 1476 (1961).

 $a_{\rho\sigma} \sim A + B$

A term: Franck-Condon term Totally symmetric modes high overtones B term: Vibronic coupling Non-totally symmetric modes overtones?

A. C. Albrecht (1927-2002)

Raman Active Vibrations of MX₆ Octahedral Complexes

Resonance Raman spectrum of Ptl₆²⁻

Totally symmetric mode $(v_1, 2v_1, 3v_1) \rightarrow A \text{ term}$ Non-totally symmetric mode $(v_2, 2v_2, v_1+v_2, 2v_1+v_2) \rightarrow B \text{ term}$

H. Hamaguchi, I. Harada, T. Shimanouch, J. Raman Spectrosc., 2, 517-528 (1974).

Polarized Resonance Raman Spectra of Ptl₆²⁻

H. Hamaguchi, J. Chem. Phys., 69, 569-578 (1978).

Polarized Resonance Raman Spectra of IrBr₆²⁻

ρ=1 for all bands; forgot to rotate the analyzer?

H. Hamaguchi, J. Chem. Phys., 66, 5757-5768 (1977); 69, 569-578 (1978).

Ground-state Electron Configuration and Electronic States of Octahedral MX₆ Complexes

Raman Scattering Tensor and Depolarization Ratio of the Totally Symmetric Mode of Non-degenerate Ptl₆²⁻ Ion

$$\Gamma_{g}=a_{1g}, \Gamma_{e}=t_{1u}$$

 $G_0=3, G_a=0, G_s=0 \quad \rho=3G_s/(10G_0+4G_s)=0$

Ground-state Electron Configuration and Electronic States of Octahedral MX₆ Complexes

Raman Tensors for the a_{1g} Vibrational Transitions of MX_6 in an E_g " Ground Electronic State $\xrightarrow{iz} |e(\alpha) > < e(\alpha)| \xrightarrow{-iz}$ $\xrightarrow{x-iy} |e(\beta) > < e(\beta)| \xrightarrow{x+iy}$ $\bullet |g(\alpha)\rangle | -i 1 0 | -i 1 0 | 0 0 4 | 0 4 | 0 0 4 | 0 4 | 0 0 4 | 0 4$ |**g(**α): $|e(\alpha)><e(\alpha)|$ · (00-1) **|g(**β)> $\xrightarrow{x-iy} |e(\beta) > < e(\beta)| \xrightarrow{-iz}$ **|g(**α): $\xrightarrow{iz} |e(\beta)\rangle < e(\beta)| \xrightarrow{-iz}$ |g(α)> **|g(**β): $\xrightarrow{iZ} |e(\alpha)\rangle < e(\alpha)| \xrightarrow{X-iy}$ i 1 0 **|g(**β)>

Raman Tensors for the a_{1g} Vibrational Transitions of MX_6 in an E_g " Ground Electronic State and Depolarization Ratio

$ g(\alpha)\rangle \longrightarrow g(\alpha)\rangle$	$ \left(\begin{array}{rrrr} 1 & i & 0 \\ -i & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) $	G ₀ =3, G _a =2, G _s =0
$ g(\alpha)\rangle \longrightarrow g(\beta)\rangle$	(0 0 -i 0 0 -1 i 1 0	G ₀ =0, G _a =4, G _s =0
$ g(\beta)\rangle \longrightarrow g(\alpha)\rangle$	$ \left(\begin{array}{ccc} 0 & 0 & -i \\ 0 & 0 & 1 \\ i & -1 & 0 \end{array}\right) $	$G_0=0, G_a=4, G_s=0$
g(β)> → g(β)>	$ \left(\begin{array}{rrrr} 1 & -i & 0 \\ i & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) $	G ₀ =3, G _a =2, G _s =0
$G_0=6, G_a=12, G_s=0$	ρ=(3G _s +50	$G_a)/(10G_0 + 4G_s) = 1$

Symmetry of Raman Scattering Tensor

Irreducible representations:

 Γ_i : the initial states, Γ_f : the final state, Γ_R : Raman tensor

 $\Gamma_{\mathsf{R}} = \Gamma_{\mathsf{i}} \times \Gamma_{\mathsf{f}}$

Vibrational Raman Scattering:

 $\Gamma_{i} = \gamma_{g} \times \gamma_{1}$, $\Gamma_{f} = \gamma_{g} \times \gamma_{v}$ and therefore $\Gamma_{R} = \gamma_{g} \times \gamma_{g} \times \gamma_{v}$ where γ_{g} : the ground electronic state and γ_{v} : vibrational state

A_{1g} Vibrational Raman Scattering: d₆ PtI₆²⁻ $\gamma_g = a_{1g}$, $\gamma_v = a_{1g}$ and therefore $\Gamma_R = a_{1g}$ $\rho = 0$ d₅ IrBr₆²⁻ $\gamma_g = e_g$ " $\gamma_v = a_{1g}$ and therefore $\gamma_R = a_{1g} + t_{1g}$ $0 < r < \infty$

Depolarization Ratio in Vibrational Raman Scattering

Polarizability theory (Placzek, 1934)

1) Non-resonant condition, 2) Non-degenerate condition

Totally symmetric modes: $G_0 \neq 0$, $G_a = 0$, $G_s \neq 0 \Longrightarrow 0 \le \rho < 0.75$ Non-totally symmetric modes: $G_0 = 0$, $G_a = 0$, $G_s \neq 0 \Longrightarrow \rho = 0.75$

- Breakdown of the Placzek polarizability theory
- 1) Non-resonant condition (Spiro, 1972)

Non-totally symmetric modes : G0 = 0, $G_a \neq 0$, $Gs \neq 0$ 0.75< ρ < ∞

2) Non-degenerate condition (Hamaguchi, Harada, Shimanouchi,1975) Totally symmetric modes : $G_0 \neq 0$, $G_a \neq 0$, $G_s=0$ $0 < \rho < \infty$

Placzek's prediction was proved after 40 years to establish firmly the theoretical basis of Raman spectroscopy.

Cyanobacteria

- Photosynthetic microorganism
- Origin of chloroplast
- Model organism for photosynthesis research

Pigments contained in cyanobacteria

NIR Raman measurements of cyanobacteria

1 mW; 150 sec

- Thermosynechococcus elongatus
- Thermophilic cyanobacteria (Unicellular rod-shaped)
- Well-established model organism
 Entire genome sequenced

1064 nm Excited Raman Spectrpscopy with InP/InGaAsP

1064 nm Excited Multichannel Raman Microspectrometer

NIR Raman measurements of cyanobacteria

Deep near-infrared excitation is needed for avoiding the photodamage.

Space-resolved Measurements and SVD Noise Filtering

1) N. Uzunbajakava, C. Otto, et al. Biophysical Journal (2003) 3968-3981.

Space-resolved Raman Spectra within a Cell

Raman mapping images

Functions of photosynthetic pigments

Resonance Raman Quantification of Carotenoids in Human Serum

Absorption Spectra of ß-carotene / cyclohexane (8 mg/L)

Raman Spectra of Serum with Different Excitation Wavelength

Raman Spectra of Serum with Different Excitation Wavelength

Characteristic of Serum Carotenoids

Proportion of individual carotenoids

(E-Siong, 1999)

Raman Spectra of Carotenoids

Lutein, β -Carotene, β -Crytoxanthin and α -Carotene have very similar v₁ peak position, apart from Lycopene.

Absorption Spectra of Carotenoids

Lutein, α -Carotene, β -Crytoxanthin and β -Carotene have very similar absorption characteristics, apart from Lycopene.

Two Groups of Carotenoids in Serum

Fitting the Observed Band with Two Components

A Global Analysis

Proportion of Components Amplitude after Global Analysis

