2013.10.8 Carl-Zeiss lecture Jena

Raman spectroscopy: Variants and potentials

Hiro-o Hamaguchi

National Chiao Tung University, Taiwan The University of Tokyo, Japan Wseda University, Japan Raman spectroscopy: Variants and potentials

O Raman brothers, Raman, CARS/SRS, and SERS/TERS What do they look at? Hamaguchi's score sheet for Raman brothers

O Raman spectroscopy in Japan Discovery of rotational isomerism Normal coordinate analysis

O Time-resolved Raman spectroscopy Dynamic polarization model of chemical reactions

O Raman microsepctroscopy of living cells

O Tailor-made Raman spectroscopy

Raman Spectroscopy

Raman scattering :

Inelastic light scattering discovered by C. V. Raman in 1928

Raman spectroscopy:

Spectroscopy utilizing Raman scattering

C. V. Raman (1888-1970)

Raman Brothers: What do they look at?

Normal Mode of Vibration:

The Totally Symmetric C-C Stretch Mode of an Acetone Molecule

Vibrational Motions of Ensembles of Acetone Molecules

What Does Raman look at?

Raman Looks at a Normal Mode of Vibration.

Raman Gives a Molecular Fingerprint.

http://dailynewsagency.com

What Does CARS/SRS Look at?

CARS/SRS Looks at a Vibrational Coherence

CARS Can Give a Molecular Fingerprint After Some Mathematical Treatments.

CARS spectra

 $Im\chi_3$ spectra by MEM

 $\begin{array}{l} \text{Im} \chi_3 \text{ spectra after} \\ \text{SVD} \end{array}$

Raman spectra

Okuno et al. Angewandte Chemie, Angew. Chem. Int. Ed., 49, 6773-6777 (2010).

Vibrational Motions of Ensembles of Acetone Molecules

What Does SERS/TERS Look at?

SERS/TERS is Likely to Look at a Local Molecular Motion (May not be a Normal Mode)

SERS/TERS May not Give a Full Molecular Fingerprint.

http://dailynewsagency.com

Hamaguchi's Score Sheet for Ramans

	Raman	CARS/SRS	SERS/TERS	
Selection rule	Established	Established for homogeneous systems	Established for homogeneous systemsDependence on individual molecular orientation?	
Polarization rule	Established	Established for homogeneous systems High polarization capabilities	Dependence on individual molecular orientation?	
Information content	Molecular Fingerprint	Molecular fingerprint after mathematics	cular nt after matics Molecular Fingerprint?	
Sensitivity	Ensemble	Ensemble	Single molecule	
Spatial resolution	0.61λ/NA (500 nm)	0.61λ/NA√3 (300 nm)	Tip size (10 nm)	
Time resolution	ps	ps	ps	
Experimental difficulty	Fluorescence interference	Phase match/mismatch	Tip/substrate dependence	

O Raman is HH's first choice for advanced applications.

O CARS/SRS surpasses Raman for its polarization capabilities.

O SERS/TERS excels in sensitivity and spatial resolution. Its information content yet to be clarified.

Raman Spectroscopy at Tokyo

Discovery of the Rotational Isomerism

(1899-1983)

Raman Spectra are letters from the molecule

> Vibrational Raman spectra are molecular fingerprints

Professor Takehiko Shimanouchi (1916-1980)

Wolkersten

T. Shimanouchi, Tables of Molecular Vibrational Frequencies, NSRDS-NBS 39.

Sym. species	No.	Approximate type of mode	Selected value of frequency	Infrared	Raman	Comments
		(Gas) (Liquid)		<i>cm</i> ⁻¹	<i>cm</i> ⁻¹	
. (14 8			2055 D	(Gas)	(Liquid)	a 21
ag	<i>v</i> ₁	CH_2 s-stretch	2957 D	18	2957 (10) p	
	<i>v</i> ₂	CH_2 scis	1445 C	18	1445 (4b) ap	0 0
	ν3	CH_2 wag	1304 C	18	1304 (0) p	Str Gend
	V 4		1052 C	18	1052 (4) p	O TA TA
	V 5		754 C	18	(10b) p	
	V6		300 G		500 (8) p	SE (manaha m
au	דע	CH_2 a-stretch	3005 D	Jour Maria	18	Sr (gauche v_1 ,
		CII	1199 D		streten	gauche vii).
Case a Sal	<i>v</i> ₈	CH_2 twist	1123 D 779 D	1122.5 W	18	2 19
	V9		(13 D 199 C	112.5 M	la se la	0 8
L	V ₁₀	CH a stratak	125 G	125 M	1a 2005 (2h) dr	0 6
$ \begin{array}{c c} 0_g & \nu_{11} \\ \nu_{12} \\ \nu_{12} \end{array} $	V11	CH truist	1964 C	ia	1264 (3) dr	
	V ₁₂		080 C	ia	080 (2) n	191 (m. 197
h	V13	CH a strotab	2083 C	2083 3 M	105 (2) P	y in 0
Ou	V 14		1461 4	1460 6 S	ia	2 E14
	V15		1901 A 1929 R	1939 2 6	in in	V 214
	V16	CCl stratch	728 C	728 3 VS	ia	2 114
	V17	CCCl deform	220 C	229.3 W	ia	2 114

High Resolution Raman Spectrometer (1972)

Raman Gas Cell in Laser Cavity (1972)

Raman Spectrum of CH_3I (1972)

Resonance Raman scattering

RESONANCE RAMAN SPECTROSCOPIC STUDY ON IODINE IN VARIOUS ORGANIC SOLVENTS: SPECTROSCOPIC CONSTANTS AND HALFBAND WIDTHS OF THE I₂ VIBRATION* **

W. KIEFER‡

Sektion Physik der Universität München, Lehrstuhl J. Brandmüller, D-8 München 40, Germany

and

H. J. BERNSTEIN

Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada

Theory of Resonance Raman Scattering

Albrecht's vibronic theory of resonance Raman Scattering A. C. Albrecht, J. Chem. Phys. 34, 1476 (1961).

g

A term: Franck-Condon term Totally symmetric modes (a) High overtones

 $a_{\rho\sigma} \sim A + B$

B term: Vibronic coupling Non-totally symmetric modes No high overtones

е

g

Raman Active Vibrations of MX₆ Octahedral Complexes

Resonance Raman spectrum of PtI₆²⁻

Totally symmetric mode $(v_1, 2v_1, 3v_1) \rightarrow A$ term Non-totally symmetric mode $(v_2, 2v_2, v_1+v_2, 2v_1+v_2) \rightarrow B$ term

H. Hamaguchi, I. Harada, T. Shimanouch, J. Raman Spectrosc., 2, 517-528 (1974).

Polarized Resonance Raman Spectra of PtI₆²⁻

Polarized Resonance Raman Spectra of IrBr₆²⁻

ρ =1 for all bands; forgot to rotate the analyzer?

H. Hamaguchi, J. Chem. Phys., 66, 5757-5768 (1977); 69, 569-578 (1978).

Raman Scattering Tensors and Depolarization ratio of the Totally Symmetric Mode of the IrBr₆²⁻Ion

$$|g(\alpha)\rangle \longrightarrow |g(\alpha)\rangle \begin{cases} 1 & i & 0 \\ -i & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad G_0 = 3, \ G_a = 2, \ G_s = 0 \\ |g(\alpha)\rangle \longrightarrow |g(\beta)\rangle \qquad \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & -1 \\ i & 1 & 0 \end{bmatrix} \quad G_0 = 0, \ G_a = 4, \ G_s = 0 \\ |g(\beta)\rangle \longrightarrow |g(\alpha)\rangle \qquad \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 1 \\ i & -1 & 0 \end{bmatrix} \quad G_0 = 0, \ G_a = 4, \ G_s = 0 \\ |g(\beta)\rangle \longrightarrow |g(\beta)\rangle \qquad \begin{pmatrix} 1 & -i & 0 \\ 0 & 0 & 1 \\ i & -1 & 0 \end{bmatrix} \quad G_0 = 3, \ G_a = 2, \ G_s = 0 \end{cases}$$

 $G_0=6, G_a=12, G_s=0$ $\rho=(3G_s+5G_a)/(10G_0+4G_s)=1$ H. Hamaguchi, J. Chem. Phys., **66**, 5757-5768 (1977).

Advances in nfrared and Raman Spectroscopy VOLUME 12

Edited by

R.J.H. Clark and R.E. Hester

Chapter 6

THE RESONANCE EFFECT AND DEPOLARIZATION IN VIBRATIONAL RAMAN SCATTERING

Hiro-o Hamaguchi

Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

1 INTRODUCTION

Vibrational Raman scattering is essentially a vibronic process which involves the initial, intermediate, and final vibronic states. Under certain conditions, however, it can be regarded as a purely vibrational process similar to infrared absorption. This was first shown by Placzek,⁽¹⁾ who proved that if (i) the ground electronic state is nondegenerate and (ii) the excitation is offresonant, the vibrational Raman intensities are approximately given by the vibrational matrix elements at the electronic polarizability (the Placzek polarizability theory). Conditions (i) and (ii) are well satisfied for offresonant vibrational Raman scattering from molecules in their nondegenerate ground electronic states and the polarizability theory has been extensively used by vibrational spectroscopists, who found it convenient to treat vibrational Raman scattering with an exact parallelism to infrared absorption; the intensity of infrared absorption is related to the vibrational-coordinate dependence of the dipole moment, while the vibrational Raman intensity is correlated with that of the polarizability. The Placzek polarizability theory has another advantage in that it is in harmony with the classical picture of vibrational Raman scattering, in which the oscillating dipole moment induced by the electric field of the incident light is modulated by the vibrational motions, resulting in scattering with shifted frequencies.

The breakdown of the polarizability theory manifests itself most clearly in the polarization properties of vibrational Raman scattering. As predicted by Placzek,⁽¹⁾ the removal of either or both of conditions (i) and (ii) may lead

Nanosecond Transient Raman Spectrometer (1983)

Photoisomerization of *Trans*-Stilbene

Why, when and how rotation occurs in the excited state?

Probe solvent dependent structure and dynamics of S_1 trans-stilbene by time-resolved Raman spectroscopy

Nanosecond Transient Raman Spectrum of S₁ Trans-Stilbene (1983)

T. L. Gustafson, D. M. Roberts, and D. A. Chernoff, J. Chem. Phys. 79, 1559 (1983). H. Hamaguchi, C. Kato, M. Tasumi, Chem. Phys. Lett., **100**, 3-7 (1983).
Three Raman Stilbenists on a Bridge near the Noishvanstein Castle (1985)

VIBRATIONAL SPECTRA AND STRUCTURE

Volume 16

Chapter 4 TRANSIENT AND TIME-RESOLVED RAMAN SPECTROSCOPY OF SHORT-LIVED INTERMEDIATE SPECIES

Hiro-o Hamaguchi

Department of Chemistry Faculty of Science The University of Tokyo Tokyo, Japan

Ι.	INTRODUCTION	228				
II.	EXPERIMENTAL	230				
	 A. Lasers B. Spectrometers and Detectors C. Sampling Techniques D. Data Processing E. Systems 	230 235 238 238 239				
III.	OVERVIEW	240				
	 A. Radical Species B. Electronically Excited Molecules C. Intermediates of Biological Interest D. Others 	240 243 247 250				
IV.	RAMAN SPECTRA AND STRUCTURE OF ISOATOMERS					
	MOLECULES	252				
	A. A Simple MO Description B. trans-Stilbene C. Biphenyl D. Conclusion	252 256 267 279				
V.	MANIFESTATION OF A NEW SCHEME OF CIS-TRANS PHOTO- ISOMERIZATION BY TRANSIENT RAMAN SPECTROSCOPY	280				
	A. "One-way" and "Both-way" Isomerization B. Retinal C. 2-Styrylanthracene D. Conclusion	280 282 290 293				
VI.	FUTURE PERSPECTIVE	293				
	ACKNOWLEDGMENT	296				
	REFERENCES	296				

(1987)

Koichi Iwata

Volker Deckert

Picosecond Time-resolved Raman Spectrometer

S_1 trans-Stilbene in CHCl₃

The C=C Stretch Raman Band of S_1 trans-Stilbene in Alkanes

The peak position shifts to higher wavenumbers and the band width decreases on going from hexane to hexadecane. Why?

Peak Position vs Band Width in Alakne Solvents at Different Temperatures

Dynamic Frequency Exchange Model and Vibrational Bandshapes

 $\Delta \Gamma \ / \ \Delta \Omega = \tau_{1/2} \ ; \ G(\tau) {=} exp({-ln2\tau^2}/{\tau_{1/2}}^2)$

Peak Position vs Band Width in Alakne Solvents at Different Temperatures

Fitting of the C=C Stretch Raman Band of S1 *trans*-Stilbene by the Two Frequency Exchange Model

W₁=2.7x10¹² sec⁻¹ (370 (fs)⁻¹)

$$\underbrace{ \bigvee_{w_1}}_{w_2} \underbrace{ \underbrace{ \bigvee_{w_2}}_{\otimes} \underbrace{ (\bigvee_{w_2})}_{\otimes} \underbrace{ (\bigvee_{w$$

W₁=1.5x10¹² sec⁻¹ (670 (fs)⁻¹)

Isomerization Rate k_{iso} is Proportional to W_1

Dynamic Polarization Model of Isomerization

Hamaguchi, Iwata, CPL 208, 465 (1993).

Deckert, Iwata, Hamaguchi, J. Photochem. Photobiol. **102**, 35 (1996). Iwata, Ozawa, Hamaguchi, JCP **106**, 3614 (2002).

How Do Chemical Reactions Proceed?

"How can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry ?"

In "What is Life"

Erwin Schrödinger

E. Schrödinger (1887-1961)

Raman Spectroscopy of Really Living Cell

Y-S Huang, T. Karashima, M. Yamamoto, H. Hamaguchi, J. Raman Spectrosc., 34, 1-3 (2003).

Molecular Component Distribution Imaging (MCDI) of Living Cells with Multivariate Curve Resolution Analysis

Multivariate Analysis

Matrix factorization by Singular Value Decomposition (SVD)

A ≈ WSH n n Х m m ... Х Intensity Singular value 10₈∃ 1500 1000 1500 1000 500 10 15 20 0 5 Raman shift / cm⁻¹ Raman shift / cm

n

Multivariate Curve Resolution (MCR)

Multivariate Analyses: Comparison

SVD

 $\begin{array}{l} \mathsf{MCR} \\ \mathbf{W}, \, \mathbf{H} \geq 0 \ , \, \mathsf{L}_1 = 0.001 \end{array}$

6 8 10 0 2 4 6 1

White Blood Cells

Neutrophil	5	50-70 %	10-12 μm	Phagocytosis - bacteria, fungi
Eosinophil	8	2-5 %	10-12 μm	Combating parasites Modulate allergic inflammatory responses
Basophil		< 1 %	12-15 μm	release histamine for inflammatory responses
Lymphocyte		20-40 %	7-8 µm	B cells T cells NK cells
Monocyte	•	3-6 %	14-17 μm	Differentiate into tissue resident macrophages

MCR Analysis of White Blood Cells

MCDI of White Blood Cells

Organelle Specific Waters in a Living Cell

S. Tiwari, M. Andoa and H. Hamaguchi, in preparation

Broadband Multiplex CARS Microspectroscopy

H. Kano and H. Hamaguchi, Anal. Chem., 79, 8967-8973 (2007).

Vibrational CARS Movies of a Single Budding Yeast Cell

 $ω_1$: 10 mW, $ω_2$: 10 mW

Expo. time/pixel: 30 msec

Image acquisition time: ~ 12 sec

Multi-focus Confocal Raman Microspectroscopy

M. Okuno and H. Hamaguchi, Opt. Lett., 35, 4096-4098 (2010).

Budding yeast cells

~20 sec / image !!

Raman Measurement of Food in situ

Raman Application to Food Science

Natural or cultured food resources

Food processing

Food safety & quality control:

- Food constituent
- Functional ingredient
- Contamination of pathogens or residual pesticides

Label-free, less invasive and rapid analysis by using Raman spectroscopy

Raman Spectra of Tuna

Lipid Content Analysis of Tuna

First Student Summer Camp of Taiwan Association of Raman Spectroscopy (2013.7.6 at Jianshi)

